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Abstract 

We study the generation and evolution of density perturbations and peculiar velocities due 

to primordial magnetic fields. We assume that a random magnetic field was present before 

recombination and follow the field’s effect on the baryon fluid starting at recombination. 

We 6nd that magnetic fields generate growing density perturbations on length scales larger 

than the magnetic Jeans length. An, and damped oscillations for scales smaller than An. 

We derive the magnetic Jeans length explicitly by including the back-reaction of the ve- 

locity field onto the magnetic field. For small wavenumbers Ic (large length scales). we find 

the magnetic field-induced density power spectrum generally scales as k’, and peaks at 

k m Xi’. Depending on the strength of the magnetic field and the ultraviolet cutoff of its 

spectrum, structure can be generated on small scales early in the history of the universe. 

For a present nn, magnetic field of lO-‘O Gauss on intergalactic scales, we find that per- 

turbations on galactic scales could have gone non-linear at r 2: 6. Finally, we discuss how 

primordial magnetic fields affect scenarios of structure formation with non-baryonic dark 

matter. 

=p 0 orated by UnlVOrSitlas Research Association Inc. under contract with the United States Department 01 Energy 



1. Introduction 

The past decade has seen tremendous growth in our observational picture of the Uni- 

verse. The Cosmic Background*Explorer (Smoot et al. 1992) and other cosmic background 

experiments have shown that the large-scale clustering seen in galaxy surveys is consistent 

with a primordial origin for density perturbations. On the largest scales, where density 

perturbations are linear (i.e., nn~ variations in the density are smaller than the mean), mi- 

crowave anisotropy observations point toward an approximately Harrison-Zel’dovich spec- 

trum of initial density perturbations (P(k) N (l~5,j’) cc k; Smoot et al. 1992; Ganga et al. 

1993). Such a spectrum arises naturally in inflationary theories its well as in models based 

on topological defects. 

On scales smaller than N 8h-* Mpc (where h is the Hubble constant in units of 100 

km/sec/Mpc), galaxy clustering is non-linear, and one needs to rely on numerical studies 

to get insight into the physics of cluster and galaxy formation. Xot only do the density 

perturbations become non-linear, but the complexity of the physics involved escalates as 

hydrodynamical effects become important. In this paper, we show that an element of this 

increased complexity that is often neglected, namely magnetic fields, may play a key role 

in the formation of structure in the non-linear regime. 

Of great relevance to understanding the role of magnetic fields in galaxy formation 

are the recent observations of Faraday rotation associated with high-redshift Lyman-o ab- 

sorption systems (Wolfe 1988; Wolfe, Lanzetta, & Oren 1991). These observations suggest 

that dynamically significant magnetic fields (B N PGauss) were present in condensations 

at high redshift. Together with observations of strong magnetic fields in clusters (Kronberg 

1994), these observations further support the idea that magnetic fields play a dynamical 

role in the evolution of structure. 

The notion that magnetic fields may play an important role in structuring the universe 

is not new. The most detailed study was done by Wasserman (1978), who assumed the 

existence of a random magnetic field at recombination and, by treating it as a “source 

term,” showed that it may act as a source for galaxy-scale density fluctuations. These 

calculations, however, did not take into account the possibility of fluid back-reactions to 

the Lorentz force. In this sense, Wasserman’s calculations were “kinematic,” in a manner 

exactly opposite to that usually encountered in, for example, magnetic dynamo theory 

(such magnetically-driven “kinematic” calculations were considered earlier by Vainshtein 
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Sr Zeldovich 1972). Hence, the temporal evolution of the magnetic fields was entirely due 

to the Hubble expansion, and a magnetic Jeans length could not be derived. 

In order to describe the implications of random magnetic fields present at recombina- 

tion for structure formation, we consider the coupled evolution of density perturbations, 

peculiar velocities, and magnetic fields. We include the fluid back-reactions to the mag- 

netic forces, and consider how this type of dynamics determines the power spectrum of 

the resulting velocity field and density fluctuations. Inclusion of the back-reaction onto 

the magnetic field allows us to derive the magnetic Jeans length for this problem, Xe. 

Thus, we present a consistent linear perturbation analysis of the combined magnetic-fluid 

evolution equations (in the single-fluid approximation), and compute the present density 

fluctuations and vorticity under the assumption that random magnetic fields existed be- 

fore recombination. We show that the resulting spectrum for density perturbations has 

a general form which is insensitive to the magnetic field spectral index; in general, the 

spectrum of density perturbations is too steep (P(k) 0: k4) to fit the observed spectrum 

on large scales, while on small scales magnetic fields introduce a pesk in the spectrum 

around either k ,$ Xi’ or k N kmrx: (where k,, is the ultraviolet cutoff of the magnetic 

field spectrum). 

The outline of our paper is as follows: We present the basic magnetohydrodynamic 

equations used in our analysis, discuss plausible initial conditions, and carry out our lin- 

earization, in $2. In $3, we consider the compressible mode and compute the resulting 

power spectrum and amplitude of the generated density fluctuations. In $4, we present 

the solutions for the incompressible modes. Our results are discussed in $5. For the sake 

of clarity, we have placed details of our analysis in the .4ppendices. 

2. The Perturbation Analysis 

In this section, we review the physical conditions at the time of recombination, discuss 

the basic equations used in our analysis, and develop our perturbation scheme. 

We assume that random magnetic fields were present at the epoch of recombination 

and that these were formed through pre-recombination processes (e.g, Hogan 1983; Turner 

& Widrow 1988; Qua&rock, Loeb, & S pergel 1989; Vaschaspati 1991; Fiatra 1993; Cheng 

& Olinto 1994). As the universe cooled through recombination, baryons decoupled from 

the background radiation, and the baryon Jeans length decreased from scales comparable 
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to the Hubble scale (- 100 Mpc) to N 10 kpc in comoving units. (Throughout this paper, 

we use comoving length scales, setting the scale factor today to unity? R(ts) = 1; physical 

length scales at any other timecan be found by multiplying the comoving scale by R(t).) 

After recombination, baryons are f&e to move on scales larger than the Jeans length, 

and will do so if there are initial perturbations in the density field due to gravitational 

instabilities. Concurrently, magnetic fields that were frozen into the baryon-photon plasma 

before recombination will tend to relax into less tangled configurations once the baryons 

they are coupled to are free to move. Consequently, density perturbations in the baryons 

can be generated through the Lorentz force even if the density field is initially smooth, 

and the initial peculiar velocity field vanishes at recombination. To understand the effect 

of magnetic fields on the origin of density- perturbations, we aSsume that no initial density 

perturbations or peculiar velocities were present at recombination, so that all subsequent 

density perturbations or velocities are induced by magnetic fields alone. (We address the 

more general case of combining initial density perturbations and magnetic field effects in 

a subsequent paper.) 

To follow the evolution of the density. peculiar velocity, and magnetic field after recom- 

bination, we write the basic one-fluid magnetohydrodynamic (MHD) equations in comoving 

coordinates, 

VIL (VxB)xB 
+ 4rrR ’ (1) 

ri 
&P + 3-p + 

v (PV) 
R R =o, (2) 

W 
- = 47Gb - k’b(t)], RZ (3) 

V.B=O, (4) 
V x (v x RZB) 

&(R’B)= R (5) 

(cf. Wasserman 1978), where $ is the gravitational potential, R is the scale factor, Pb = 

p*(t) is the uniform background density, and all other symbols have their usual meaning. 

We have neglected all viscous and diffusive terms because the relevant Reynolds numbers 

are very large at recombination. 

2.1 Initial Conditions 



We begin with the basic assumption that all baryonic matter is uniformly distributed 

at recombination (t = t,.,), with density Pb(t = t,,,) and we further assume that this 

matter has zero peculiar velocity. Furthermore, we assume that there is a magnetic field 

already present, B(x, t = t,,) = B,,,(X), presumably created well before recombination: 

we posit that this magnetic field is randomly oriented on spatial scales smaller than the 

Hubble radius at recombination and has no mean components on the Hubble scale; thus: 

we assume that 

OL&4) = 0, 

where the srqlar brackets mean ensemble averaging. 

The basic assumption underlying our calcuation is that the above (frozen-in) mag- 

netic field does not significantly perturb the baryonic matter until photons and bsryons 

decouple; once decoupling occurs, the unbalanced Lorentz forces act to disturb the smooth 

background density, leading to both density perturbations and peculiar velocities of the 

baryonic fluid (Wasserman 197’8). This physical picture suggests the following scheme for 

decomposing the three flow variables of interest - the fluid density, the fluid velocity, and 

the magnetic field: we write 

P(x>t) = Pb(t) + ‘+(x, t) : k’b(t)[l f 6(x, t,] > 

v(x, t) = vb t v’(x: t) , 

B(x,t) = Ba(X,t) + b(x,t). 

Here B is the total field, Bb is the background random magnetic field, with &,(X, t,.,) = 

B,,,(x), and b is the difference between the total field and the background; in other words. 

Bb(r) is simply the initial random field evolved only by the Hubble flow, while b is the 

additional field which results as the Lorentz force perturbs the baryonic fluid, and the fluid 

reacts back. Similarly, v is the total velocity, v’ is the perturbation velocity, p is the total 

density, Sp is the density perturbation, and 6 is the non-dimensional density perturbation. 

With these definitions, we impose a number of constraints. Note that the background 

flow is assumed to vanish identically, 

v* EO. 
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We also assume that the perturbed quantities 6,. v’, and b vanish at t,,,: 

6(x, Lc) = 0, 

v’(x, tre,) = 0, 

b(x,&) = 0. 

Since vb = 0, we shall drop the prime for the sake of notational economy in the following. 

2.2 The Perturbation Scheme 

The next step is to identify our “small” quantities, which will fix the ordering of the 

perturbation scheme. In the spirit of a linearized theory, we shall assume that the density 

perturbations resulting from the Lorentz force are small i.e., that 

Similarly, we assume that the induced peculiar velocities and magnetic fields are small. 

e.g., we assume that 

LR;;r:;: r) e *’ 

where r is the characteristic time scale of the flow, v,,~ is the rm.r flow speed. and LR(t,, f 

r) is the characteristic length scale of the flow at time t,,, t r. Using these scaling 

relationships, we linearize eqs. (l)-(5), noting that since we are primarily interested in 

wavelengths larger than the Jeans length, the pressure term may be ignored. Then, upon 

retaining terms to tlrst order in 6, v, and b, we obtain 

atvt&,/ti [Vx(Bb+b)lxBb+(vXBb)Xb 
R -z+ 4nR(t)~a(t) 

(6) 

a,s + y = 0, (7) 

v2u: = 4sR2Gpb6, (8) 

V.Bb=V.b=O, (9) 

(10) 

(11) 

Note that eqs. (10) and (11) allow us to clearly distinguish between the background field 

Bb and the perturbed field b. 
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In addition to eqs. (6)-( ll), we have a number of further constraints which depend 

on the cosmological model we assume. To isolate the effect of magnetic fields from other 

sources of density perturbatiop and to keep the analysis simple, we chose to study iirst 

the case of a flat universe with a critical density of baryons (a~ = 1). In $3 and $5 we 

discuss the effect on our results of including non-baryonic dark matter as the dominant 

component of the universe. 

For an Einstein-De Sitter model, the following relations hold during the time of ‘in- 

terest (0 5 i 5 zrK 2 1100): 

ps(t)R3(t) = Pb(tO) 5 PO, 112a) 

6*Gpa(t)t2 = 1, (12b) 

R(t) = (t/ta)2’3, (12c) 

Bb(x,t)R’(t) = hx(x)R2(Lc) = Bb(X,to) = Be(x), (12d) 

where ts is the age of the universe, and quantities with subscript 0 are evaluated at the 

present time; we choose R(to) E 1. Note that eq. (12d) follows trivially from eq. (10) 

above. 

3. The Compressible Mode 

In the following, we fist derive the time evolution of the compressible modes and then 

solve for the spectrum of generated density perturbations. In $4 we derive the correspond- 

ing evolution for the incompressible modes, which evolve differently and are decoupled 

from the compressible modes. 

3.1 Time Evolution 

Taking the divergence and time derivative of eq. (6), and using the remaining eqs. 

(7)-( 12), we obtain an equation for the evolution of the velocity divergence, 

a, {Rat(~v. v)} - Z$v . v = s , 

where 

Q~(VxVx(vxBo)]xBo+(VxBO)x(Vx(vxBr,)]. 

Using eqs. (12), we can m-write eq. (13) in the form 

2V.Q 
4npo’ 

(13) 

(14) 

(15) 



Xe next Fourier-transform the fluid variables in comoving coordinates, 

Be(x) = d3k exp(ik.x)@k), . J (16) 

v(x, t) = J d3k exp(ik.x)C(k,t). (17) 

Brec(x) is assumed to be homogeneous and isotropic (and, obviously, so is Be(x)); therefore 

fi( k) obeys the relation (cf. Kraichnan & Nagarajan 1967 Moffatt 1978) 

where i and j label the i-th and j-th components of the vector B(k). The evolution 

equation for each velocity mode C(k) is then obtained by inserting the Fourier expressions 

(16)-( 17) into eq. (15): 

k. 
( 

t%~,+a&-;) J(k,t)=B/d3kld3kzF[k,kl,kz,~(kl).~(kl),~(k-ki-kl,t)], 

(19) 
There 

F E -{k*(Bl ’ Bz)(k - li2)i - k’[(k - k2). fil]Bzi 

+ 2(k ’ &)[(k . Bl)lczi - (kz fil)!~i]} Ci(k - kl - kz, t) , 

6, c fi(kl), and & E fi(kz) . For notational convenience, we define a logarithmic time 

v&able T E ln t, and further de&e the operator Gi such that 

/ 
d31c,d3k, F z Gi(k : l)v;(l,T), 

i.e., 

Gi ~ - J d3kld3kzd31{k*(~, . ~.2)(~ - kz)i - IC’[(k - kz) ~~1~~~ 

+ 2(k ’ &)[(k ’ Ijl)lczi - (kz ’ fil)ki]} 6(k - kl - kz - 1). 

Cpon using the definition k . ir(k,t) = !+(k,t), where the subscript 11 represents the 

compressible (longitudinal) component of C, eq. (19) then reads 

@IT + & - 4 
> 

C/(k,T) = iGi(k : l)Ci(l,T) . WI 
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Since the ensemble average of both sides of eq. (20) vanishes, we compute the evolution of 

the quadratic quantities. .4t the expense of yet further algebra, one obtains the following 

three equations: 

~T(h(k~)I*) = 2Re(~ll(k,T)dT~ii(k,T)), (21a) 

aTRe(i;ll(k,T)aT~ii(k,T)) = $II(k.T)12) - R+(k, T)&$(k,q) 

+(lWIl(k,T)I*) + fRe(Gi(k : l)~i(l,T)~~(k,T)), (21b) 

~(l%dktT)12) = ~Re(i,,i(k,T)aTz;ii(k,Tj) - 2(j&q,(k,q*) 

+ yRe(G(k : l)Ci(l, T)&C:(k. 2’)) , (21c) 

where Re stands for the real part. These equations look more complex than they really 

are because the recurring term (Gun’) can be calculated easily if one notes that (BP(T)) 

and J G(vllu~) vanish (see Appendix .4). Thus, 

(Gi(k: l)Ci(l)Ci(k)) = -~(B:)E3(lt;ll(k)12). 

and 

where 

(Gi(k: l)~i(l)&+~(k)) = -~(BoZ)k3(fiil(k)aTi;(k)), 

Pi) = 1 dk 4rkzBz(k) 

These considerations allow us to write a single evolution equation for (l$(k, r)ls), 

&TT+3&T+ :+! k* &+ 4 k*-16 
(9 sa > (3. 9>1 

(12:,,(k,T)IZ)=o. (22) 

where 
(B,2) 

= = WV33 = 12x2p;G . 

In addition, we have the initial conditions (at T = Z’,,,): 

(i’ll(kT = T,ec)) = 0, 

~T(l~~~(k~~)12)I,.c = 2Re(~ll(k,T,,)aTi;ii(k,T,,)) = 0, 

aTT(l~ll(k,T)I*)I,-,.= = Wr~,t(kT,ecV) = 2 Pm ~,,,r&,~rec)12 > 
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where ti E &tv and Gll,,,,(k,t) E J’m. Th ese follow from the assumption that 

the velocity is zero everywhere at t = t,,,. In the last initial condition above, kl,,r,,( k, t,,,) 

will be obtained later upon using eq. (6). 

Returning to our original time variable t s exp(T), and again defining time derivatives 

with respect to the ordinary time t, the solution for the mu velocity can be written as 

follows: 

(i) For k # ks : 

&ns(kf) = ~,,,rm,(kW~ (zy[(&y - (Ct-J~]~ (23a) 
(ii) For k = ks : 

f$,rms(k, 4 = i’:,,rm.(k, tr.c)t ~&y~(k)~ (23b) 

where m(k) G J25- 12ak* = 5dm. The transition from stable (mz < 0) to 

unstable (m* > 0) modes occurs at k = k 8, and we therefore 6nd the magnetic Jeans 

lengrh to be 

(24) 

!Aodes with length scales greater than AB (k < ks) are unstable. while those on scales 

smaller than Xg (k > kB) undergo damped oscillations. As in Peebles (1980, 1993), one 

can roughly estimate the magnetic Jeans length by using the ;\lfven speed, VA = B/s> 

in place of the sound speed in the expression for the ordinary Jeans length, which gives 

B 1 
Xg--- 

2P VE ’ 

very close to the exact expression derived in eq. (24). 

The magnetic Jeans length derived above can be constrained by the requiring that, 

at the time of nucleosynthesis, the average energy density in the magnetic field, 

pe(t) = (Bkt)*) = (B,2) 
8~ 8xR(t)4 . 

be significantly less than the energv density in radiation, 

r2g,T4 
P4t) = 3. , 
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where g* is the number of relativistic degrees of freedom. and T is the temperature of 

the background radiation (Barrow 1976). Since both energy densities redshift as R-‘. it 

su&es to require that pi < p,, today. which gives: 

(Bi) f < 4 x 10m6 Gauss. 

In principle, we should also take into account the limit on the fraction of the critical 

density in baryons given by primordial nucleosynthesis, QBhz 5 0.015 (Walker et al. 1991), 

but we have assumed a critical baryon dominated universe in deriving our solutions. For 

self-consistency, we choose to omit factors of RB in the present manuscript and leave it 

for a subsequent paper where non-baryonic dark matter is included. (We also set h = 1 

unless it is indicated explicitly.) By assuming a critical density in baryons, po 2 2 x 1O-2g 

g cm -3, in eq. (24), we can write: 

kB N 2ir 
( 

4 x IO-‘Gauss 

100 Mpc 1 (B,2)+ ’ 
(25) 

Therefore, the constraint pi < pr implies that the magnetic Jeans length today must 

satisfy A,(&) < 100 Mpc, i.e., 

kB B 
2* 

1OOMpc (26) 

(Note that if we had set 0~ < 1 in the density used in eq. (25), the effect would be to 

increase the maximum Xg, thus weakening the constraint.) 

It. is interesting to note that, unlike the ordinary Jeans length, Xs is fixed in comoving 

coordinates; for to > t > t,,,, xc(t) = X&to)R(t). 

We can now solve for 

&,s(kt) = I/= 

by using the corresponding solution C,,,( k, t), with the initial condition 

&m.(k kc) = 0, 

and eq. (7). The detailed derivation of &,,(k, t) as a function of &,,(k,t) is provided in 

Appendix B; here we only write the solution, 

&dk 4 = c(k)r(k t) 
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where, for k # kg. 

r(k, t) = m:pl[[l+~](-g-%[l-;]($J~-2]. (27a) 

for k = kg, 

r(k,‘I=J6~~)-~[(t)i-l-Qln(~)]. C-276) 

and 

c(k) = f!$ $,,r,,(k,tr.4 k. (28) 
ret 

In the form for &,,(k,t) d e Cn d b e a eve, r( k, t) can be thought of as a transfer function 

which evolves an initial spectrum c(k) from recombination to a later time t. We now discuss 

the behaviour of r(k, t) and leave a discussion of c(k), which depends on the particular 

form of the magnetic field spectrum, to the next section ($3.2). 

An interesting feature of the solution is that r(k,t) is independent of the spectrum 

of the magnetic field (as long as it is Gaussian distributed) and only depends on the 

combinations k/kg and t/tree. Therefore, the solution can be easily resealed for different 

choices of magnetic field strength. The time evolution reduces to the usual t2j3 growing 

and t-’ decaying modes in the limit k/k, + 0. For k/kB << 1 so that m N 5, the growth of 

perturbations is nearly independent of k, so that the final spectrum is mostly proportional 

to the initial spectrum given by c(k). -4s k + kg from below, the growth of perturbations 

decreases and. at k = kg, the solution changes from unstable (for k < kB) to damped 

oscillatory (for k > kB). 

In principle, the time evolution derived above is only valid for modes which correspond 

to scales smaller than the Hubble radius at recombination, k > k,,, E 2n/lOO Mpc. Modes 

on comoving scales between the Hubble radius at recombination and the Hubble radius 

today have similar but delayed time evolution, since these modes start growing after they 

enter the Hubble radius. As we show below, the spectrum of perturbations, c(k), is fairly 

steep for small k, so that the power for small k modes is negligible, and we can approximate 

the power for k < k,, to be zero. Alternatively, we can estimate the effect of the delayed 

evolution by using t/tent.,(k) instead of t/a, in r(k, t) for modes with k < k,,,, where 

&.,(k) is the time a k-mode enters the Hubble radius, tent,,(k) = t,,(k,,/k)3. 

In Fig. 1, we plot r(k,t/t,.,) for k > k,,, and T(k, t/tent.,) for k < k,, at different 

redshifts. (The sharp discontinuity at k ret is an artifact of the approximation that recom- 

bination happened instantaneously.) We can see that, independent of the spectrum of the 
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magnetic field, the power on scales k < k rFC is supressed (by the delayed growth) as is 

the power on scales k 1 kB. Therefore, while magnetic fields do not generate sign&ant 

clustering on scales larger thap -- 2*k,A and smaller than w 2nki1, they can have signif- 

icant influence on the formation of structure between these two scales, depending on the 

strength and spectrum of magnetic fields at recombination. 

If the universe were baryon-dominated with infinite conductivity, magnetic fields could 

deter the growth of perturbations on scales smaller than XB; hence, a constraint on the 

strength of magnetic fields could be derived by the observation that structures do form on 

a given scale above the ordinary Jeans length XJ. For example, for galaxies to form in a 

baryon-dominated, inf?nitely conducting flat universe, we would require XB 5 I, N 1 Mpc 

and, therefore, (B,,) ’ ‘1’ 5 4 x 10-s Gauss. However, this result does not take into account 

the presence of neutral hydrogen or non-baryonic dark matter. When these components 

are present, modes on scales below XB are also unstable. 

A stronger constraint on the strength of magnetic fields in the Universe comes from the 

observation that the large scale magnetic field in our Galaxy is N 3 PGauss. If the observed 

galactic magnetic field were solely due to a primordial field enhanced by the collapse of 

the Galaxy, then the average field’in the universe on the scale I, (the comoving scale chat 

collapsed to form a galaxy) would be &,(&) 5 lo-’ Gauss (using 2 x 10Tz4g cm-s for 

the average gas density in the Galaxy, 2 x lo-sgg cmT3 for the average gas density in the 

Universe, and the assumption that the field is frozen in as the gas contracts, B o( P’/~). 

This limit cannot be unambiguously translated into a limit on (Bi) since &(ls) refers to 

the average field on a particular scale I, averaged with a window function. This averaging 

procedure depends not only on the integrated power spectrum (Bi), but on the power 

spectrum 8*(k) as well, unless (Bi) 5 lo-’ G auss. We return to this constraint during 

our discussion of magnetic field spectra below. 

9.2 The Perturbation Spectrum 

In order to obtain the spectral dependence, &,,(k, t,,,) or c(k), we need to assume a 

specific spectrum for the background magnetic field at recombination, and solve eq. (6) at 

tr.,: 
v . +(x, t,,,) = V. U’ x Brec) x kc1 = V. LO’ x Ba) x Bol 

‘h’b(trec)&c 47VoR.L . 
i 29) 

Since a given k-mode of the velocity field is a non-linear convolution of the magnetic field 

spectrum, different k-modes of B(k) wi ‘II contribute to a given mode of C(k). In particular, 
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if the spectrum for the magnetic field has an ultraviolet cutoff, k,,,, the velocity field 

modes will be non-zero for k 5 2k,,,. Therefore, the highest k-mode for the growing 

density perturbations will be min(2k,,,, kB). In principle, the lowest k-mode excited 

through eq.(29) is k = 0, even if the magnetic field spectrum has an infrared cutoff. but, 

in practice, the Hubble radius at each time will provide an effective infrared cutoff for the 

density perturbations excited by the magnetic field. As we show below, the power in low 

k-modes is too small for the infrared cutoff to be relevant. 

In what follows, we discuss two Ansgtze for the functional form of the magnetic field 

spectrum: power laws and delta functions. The delta function Ansatz is simple to calculate, 

and can be used to relate our results to those of Wasserman (1978) and to the more realistic 

case of the power law Ansatz. 

3.2.1 Delta Function Spectm for 8*(k) 

If the magnetic field spectrum at recombination is a delta function, we can write 

B*(k) E >4”(k4;kf*). 
,L 

where A is a constant (A = (J3:) by the definition of (Bi)), the initial acceleration becomes 

for k 5 2k. (see Appendix C for details) 

~,,,rms(k, tmc) = flc4-,‘:ye $ 
ec * 

where V is a volume factor. Using eq. (28) and the definition of kB, we find for the “initial” 

density spectrum 

We can now calculate the power spectrum of density perturbations, P( k, t). and the 

variance (rm.~ power per logarithmic wavenumber interval), A( k, t) using the following 

definitions 

P(k,t) E ~(/b(k,t)/‘) (33) 

such that, 

and 

(16(x, t)l*) q / d3kP(k, t), 

A(k,t)* E 4rk3P(k,t) = Tk3(,b(k,t),*] (34) 
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such that, 

{j&x. t)l*) s /- A(k. t)‘dnk. 

For the delta function magnetic field spectrum. we obtain 

In Fig. 2, we plot As(k,t)/(kB/k.) at diff erent redshifts. asssuming k. > kB/2. We 

rescale the amplitude by ks/k, so that any choice of k, is represented as long as k, > kB/2. 

For k, < kB/2, the result is the same for wavenumbers k < k., but, because of the cutoff 

at 2k,, A6 is zero for k > 2k.. For small k, both Pa and As CK k3 for k_>k,,, and steeper 

for k < k,,,, while the peak power occurs at k N min(ks, 2k.). 

The resulting power spectrum of magnetic field-generated density perturbations can 

be compared to observations of galaxy clustering, if we assume that galaxies trace the mass 

density distribution. The power spectrum of galaxy clustering has been measured over the 

range 0.1 Mpc 2 2rk-’ .$ 10’ Mpc (e.g., Geller &r Huchra 1989; Efstathiou et al. 1990; 

Maddox et al. 1990; Collins, Nichol, S: Lumsden 1992; Fisher et al. 1993), while information 

from anisotropies in the background radiation reaches scales comparable to the present 

Rubble radius ko 2 2x/3 x lo3 Mpc (Smoot et al. 1992; Ganga. Cheng, Meyer. & Page 

1993). In the absence of bias, an estimate of the present-day scale of non-linear clustering 

can be made by estimating the scale at which the rma galsxy fluctuations are unity: for 

optically selected galaxies this is l,l(to) z 8h -’ Mpc. On large scales (O.OlMpc-’ < k -=z 

k,r), the observed galaxy power spectrum is consistent with a power law, P(k) 0: k”, 

R 21 -1 with a hint of a bend to larger n at the larger scales. COBE suggests that 

P(k) 0: k on the largest scales. Therefore, magnetic field-induced perturbations (with a 

delta function magnetic field spectrum) have too steep a spectrum (Pa(k) cc k3) to agree 

with observations on large scales. .4s we discuss below, a similar behaviour is found if 

B2( k) is a power law (in that case, P(k) c( k4); therefore, magnetic field-induced density 

perturbations cannot reproduce the observations of structure on large scales. 

On smaller scales (12 2 2a/X,r(to)), magnetic field-induced perturbations may play 

an important role. In particular, they are of interest if B’(k) is such that A(k, to)6 ,> 1 

for cosmologically relevant scales, say between clusters of galaxies (kcr N 277/2 &Ipc) and 

globular clusters (k,r E 2s/lO-* Mpc). As A6(k,t) approaches 1, the linear treatment 
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used above breaks down. However, we can make use of our linear solution to approxi- 

mately estimate the epoch, t,,(k), that a particular scale k becomes non-linear by setting 

&(k,t,l(k)) N 1 in eq. (35). - 

To see whether magnetic fields can generate non-linear structure, we must apply the 

general observational constraints upon the field for the case of a delta function spectrum. 

As discussed at the end of $3.1, the observed galactic field implies that the average field 

on scales 1 N I, must be less than 10 -’ Gauss. Define the average field on scale 1 by 

B2(I,t) ZE ( (/d3x B(x,t)W(x - x’))‘,.~ 

= 
/ 

d3k 8’(k,t)JW(kl)l’ , 

where IV(x - x’) is a window function which smooths the magnetic field on scale I and 

W(kl) is its Fourier transform. The observed galactic field constrains B(I,,ts) S lo-’ 

Gauss. Using a Gaussian window function, W(x - x’) = exp(-lx - x’12/212) in eq. (36): 

we find 

B(l,to) = (B,2)+ exp(-y). 

Obviously. I?( I, to) 5 (Bi) and for I = I, 2 1 klpc with the help of eq. (25); we can write 

which is not an easily implemented constraint because there are only upper limits for 

both (Bz) and @I,,ts). When we discuss particular examples below, we implement this 

constraint case by case. 

We now discuss what ranges of magnetic field scales k. and strength kB (or (Bi)) 

are relevant for structure formation. The time evolution of A implies that just after 

recombination perturbations on small scales grow faster than larger scales. Therefore. 

if non-linear structures form early, the first scales to become non-linear have k - k, s 

min(2k., kg). We can then solve for time, t,l(k,), when A(k>, t,,,(k,)) = 1. For 2k. > ks, 

setting Aa(k~,t.l) N 1 we 6nd that l,l satisfies 

( > F i(l-7a)=1c;ln(~), 
ret ret 

(33) 

16 



where ~6 = 7.54 x lo-sk./kB. Since t,l + t,,, as -,s + 0, the closer k. is to k~/2, the 

earlier non-linear structure on scale k~ can form. 

For example, if we take k. .= kB, then tnr( kB) N 15 t,,,, and perturbations on scale kB 

become non-linear at redshift z,r(kB) z 180. For this choice of k., structure would become 

non-linear today on scales k,r(to) N 0.14 k B see eq. (39) below). If we set k,l(t,,) = 2n/8 ( 

Mpc, then k, = kg 2 2x/l Mpc. These choices satisfy both constraints from eq. (26) and 

eq. (37), with (Bi)‘j2 N 4 x IO-* Gauss and &I,, to) 2: 2 x lo-‘* Gauss. 

As k./kB increases from unity, tnl(kg) increases and eventually approaches ts for 

k, = 7kg. Therefore, k. must be less than 7kB for magnetic fields (with a delta function 

power spectrum) to play a role in structure formation. 

As k,/kB decreases from unity, t,,l(kB) drops until k. = kB/2, when the cutoff density 

spectrum becomes 2k, instead of kB. For k, < kg/2, we need to follow t,1(2k.) instead 

to fmd when the first objects form. To find t,,r(k) for any k -=c kB, we can approximate 

m z 5 in eq. (27a) and write: 

(!a)4 E3$ (3’. (39) 

Using eq. (39), we fmd the time at which perturbations with k = 2k. become non-linear, 

t,l(2k,) ^- 1.8 t,,, (kg/2k,)3. R e q uiring that t,i(2k,) 5 ts implies 2k. 2 3.?xlO-*kB. For 

example, suppose 2k. = O.lkB, which gives t,r(2k,) 2 1.8x 103t,,, or redshift rnl(2k,) N 6. 

In this case, choosing the galaxy scale to go non-linear at z N 6, we get 2k. 2 27/l 

Mpc, kB 2 2x/0.1 Mpc, and the constraints eq. (26) and eq. (37) are satisfied with 

(Bi)‘/2 z 4 x lo-’ Gauss and 8(1,, to) z 3 x lo-” G auss. This scenario would correspond 

to the formation of galaxies around redshift 6. (Note that if we chose instead t,!(2k.) = to 

and 2k. = 2n/8 Mpc, then kB = 21;/0.3 Mpc, which satisfies eq. (26) but violates eq. (37). 

The examples discussed above demonstrate how non-linear structures within a limited 

but relevant range of scales can be formed at reasonable redshifts if magnetic fields satis- 

fying observational limits were present at recombination. Because of the steep spectrum, 

the scales influenced by magnetic fields are primarily in the non-linear regime, ultimately 

requiring a detailed numerical study. Although the Ansatz used above for the magnetic 

field spectrum is not realistic, some of the results obtained above are very similar to the 

power-law spectrum discussed below. 

Before leaving this section, we note that Wasserman (1978) discussed the case in which 
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B’(k) is sharply peaked around k = 2a/rc (his ZG corresponds to our I,) and wrote (his 

(1V.P x &et) x &ecI12)f - (;)‘(~)‘lXd,,. 

as an estimate of the effect of magnetic fields. His result corresponds to an average over 

the volume 

(]V. [(V x B,,) x Brec](2) = (4*pb(t;)Rrec)2 /d3x(]V+c,t)]2) 

which, through Parseval’s theorem, can be re-written as 

(Iv. ((v x B,,) x B&‘) = (4rpb(t.;,)Rrec)2(2;r)3 jd3k(,k. f(k, t)12) . 

Choosing k, = 27r/zc in the delta function Ansatz for a2(k) and using eq. (3I), we recover 

Wasserman’s eq. (26). 

9.2.1 Power Law Spectra for j2(k) 

4 variety of mechanisms for generating magnetic fields before recombination have 

been proposed (Hogan 1983; Turner 91 Widrow 1988; Quashnock, Loeb, & Spergel 1989; 

Vaschaspati 1991; Ftatra 1993; Cheng & Olinto 1994), but consensus on a well-motivated 

scenario is still lacking. In general, most models generate a power law spectrum, B2( k) cc 

k”, with a cutoff on small scales (a typical cutoff scale is some fraction of the Hubble 

radius when the field was generated). Of particular interest is the case of a white noise 

(n = 0) spectrum, which would result from magnetic fields generated with similar strengths 

but random directions within each Hubble volume during a phase transition in the early 

universe (e.g., Hogan 1983). After the phase transition, this can be viewed as a random 

walk of field lines, with stepsize of the order of the coherence length (the Hubble radius at 

the phase transition, or some fraction of it). 

The magnetic field spectrum generated in the early universe will evolve differently on 

different scales. On very large scales, the field is frozen into the fluid and only redshifts 

with the expansion of the universe, B cc Rm2. On very small scales, the &rite plasma con- 

ductivity allows diffusion of the field within the plasma. On intermediate scales, damping 

of the magnetohydrodynamic modes as the neutrinos decouple and later as the photons 

decouple will change the effective cutoff at recombination. (We are presently investigat- 

ing the effects of damping due to the incomplete coupling between neutrinos and the hot 
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plasma and between photons and baryons in the presence of magnetic fields.) Here, we re- 

strict our attention to the evolution starting at recombination for a magnetic field spectrum 

parametrized by the power law index n and an ultraviolet cutoff k,,,. 

If we assume that for k 5 k,,, 

8*(k) E A k”, (40) 

where A is a constant, we can calculate t,l ,,,,(k, t,,,). To calculate it analytically, we make 

the further assumption that the magnetic field is Gaussian distributed. The details of the 

tedious algebra are left to Appendix C. To leading order in k/k,, < 1 and for integer 

spectral index n between -1 and 6, rce obtain the generic result that 

t,,,rm.(k, t,,,) z d7 2c, @Oz) - 
(4a)3d3&, kiax ’ 

(41) 

where 

Using eq. (41), we find 
25Ji7 e,k* 

c(k) = - 
19%? k&k!,, ’ 

and 

&(k t) = Ten (2)’ (2)’ T(k,*) , 

J’n(k,t) N- ($)’ 2a;, (&)4 T(ktt)‘. (426) 

The spectrum of generated density perturbations is almost independent of the mag- 

netic field spectral index: t,, N 1 for -1 5 n 5 6. In contrast, there is a strong dependence 

on the ultraviolet cutoff km,, which plays a role similar to k, in the delta function Ansatz. 

As expected, the perturbation amplitude is determined by kB and k,,,. For the power- 

law indices discussed above, the dependence on an infrared cutoff, kmin, is negligible unless 

kmin is larger than the wavenumber of interest. 

We plot A,,( k, t)/(e,(k~/km.x)‘-3) at different redshifts in Fig. 3, asssuming k,,, > 

kB/2. Again, the result should be cutoff at N 2k,,, if 2k,, < kg, so that modes 

above 2k,,, have no power. (Note that the exact behaviour around k N 2k,,, cannot be 

obtained from our solution, since we neglected terms of higher order ink/k,,.) 
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For small k, I’, cx k’ for k > k,., and is steeper for k < k,,,, while the peak power 

is at k * min(kg,2k,,). The position of the peak is displaced logarithmically in time. 

An interesting property of the.spectrum P,, is that, unlike the case of the delta function 

.\nsatz, P,,(kB) does not depend on ks. This implies that for k,,, > kB/2 and k > k,,,, 

P, has a fixed shape and amplitude as ks is changed. only shifting horizontally on a P, 

vs. k plot. 

Before exploring the relevant ranges in k max and ks for the formation of structure, 

as before we discuss the observational constraints on both parameters. The constraint on 

kB in eq. (26) is unchanged, since it is independent of the magnetic field power spectrum, 

while the constraint on k,, depends on the spectral index n. Fern = 0, the average field 

on scales 1 is given by (from eqs. (36) and (40)), 

&&to) = pQ$ (43) 

where we use the same Gaussian window function as in the previous section to smooth the 

field on galactic scales. Again, for I= I,, B(I,, to) 2 lo-’ Gauss and we get 

(44) 

which is more restrictive then eq. (37). As n increases. the constraint becomes less severe, 

since the steeper the spectrum the less it contributes to Bl. 

We now return to the ranges in k mrx and kg which are relevant for structure formation. 

In an analogous way to the delta function case, small scales grow faster than larger scales, 

and the first scales to become non-linear have k N min(2k,,,, kg). We again define t”!(k), 

such that A,(k, t,r) = 1. For 2k,, > kg, &(kB, t,l) = 1 also leads to eq. (38) but with 

~1” N 3.77 x 10-2(k,,,/kB)3’2/e,. The closer k,, is to kB/2, the earlier structures on 

scales kg can form. 

Following the logic of the previous section, we find that for k,, N kg, the Crst non- 

linear objects could form at redshift z,l(kB) ‘v 300 and today k,,(to) 2 0.15 kg. Again, 

if we set k,,l(to) = 2x18 Mpc, then k ,,,= ‘v kg ‘v 2~/1 Mpc, which satisfies eq. (26) but 

does not satisfy eq. (44). Although perturbations on scales kB grow faster than in the 

previous case, the constraint from the galactic field is more severe. If instead, we choose 

k,,(to) = 2x/2 Mpc, for example, then k max z kB 1? 2a/0.3 Mpc which satisfies eq. (44) 

with (E;)‘/2 zz lo-* Gauss and &I,, to) N 10-r’ Gauss. 
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The time at which modes with k = kB become non-linear, t,,(kB). increases as 

k,,,/kB grows from unity. For magnetic fields to play a role in stnxture formation, 

t,,l( kB) must be less than the age of the universe, to, which implies that k,,, S 6kB. 

As kmax/kg decreases, so does Lr(kB) up to k,,, = kg/2, where the cutoff changes 

from kB to 2k,,,. For 2k,, < kg, in order to tind when the first objects form, we follow 

t,,(k) using our solution in the limit k < kB (m z 5) which implies: 

(45) 

From eq. (45), requiring tnr(k N 2kmax) 5 to leads to the constraint k,,, ;? 10-2kB. 

This is an approximate estimate for the lower limit for k,,,, since eq. (45) was derived 

in the limit of k << k,,,. This estimate helps de&e the range for which magnetic fields 

can make non-linear structures, i.e., lO-*kB 5 k,,, 5 6kB. For example, we can choose 

k max N O.lks, which gives z,,(k,,,) z 7. Choosing k,,, 1: 2x/0.8 Mpc. then kg 2 2?r/80 

kpc and all the observational constraints are satisfied, with (Bi)l/* 2: 3 x IOeg Gauss 

and B(I,, to) N 10-r’ Gauss. On the other hand. if k,, 2 10e2kg 2 277/S bfpc, then 

t,r(2k,,,) N to and kB = 2x/0.08 hIpc which satisfies eq. (26) but violates eq. (44). 

We see that with a more realistic choice of power spectrum for magnetic fields at 

recombination, non-linear structures in the cosmologically relevant range of scales can be 

formed at reasonable redshifts for observationally viable field strengths. We concentrated 

on galaxy scales in our examples above, but another possible consequence of magnetic 

fields at recombination is the formation of smaller objects, such as QSO’s or Pop III stars, 

at very early times. The scales on which magnetic fields generate structure are primarily 

in the non-linear regime, which limits our ability to make precise predictions within linear 

perturbation theory. In the case of the baryonic universe studied above, rhe range of 

scales affected by magnetic fields is quite mu-row, which suggests that objects formed via 

magnetic field perturbations may be biased with respect to large scale structures formed 

by primordial perturbations. 

4. Incompressible mode 

We now turn to the incompressible or transverse modes, which are also solut.ions of eqs. 

(6)-( 11). First, note that the incompressible modes do not affect the compressible modes 
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just studied, and vice-versa, an assertion which can be demonstrated by considering eq. 

(20) in detail. 

In order to study the incompressible modes, we take the curl and the time derivative 

of eq. (6), use eqs. (7)-(12), and find 

v x ( atrv + ;a,” + $@” > 0 
= : ?VXQ - 

477PO ’ 

which is the imcompressible analog of eq. (15). We then take Fourier transforms as in eqs. 

(16)-( 17), and obtain the analog of eq. (22) for the incompressible mode: 

where kr?l(k, t,,,) E Ik x t(k, t,,,)l. 

Since the calculation is essentially the same as that described above for the compress- 

ible case, we only present the solution for the incompressible case here: 

(i) for ak* # l/6: 

fi~.rmr(k, t) = ~~,,~,(k,t~=~)~(~)-i[(~)p- (+-)-‘I. (4Sa) 

(ii) for ak’ = l/6: 

Cl,,,,(k,t) = $L,m,s(k,trec)trec 
(~)-‘“(i-J 3 

where Cl,rms (k, t) E dm, p(k) I d-16. and a = (B~)/l%?p~G is the 

same as in the compressible case. Unlike the compressible modes, the incompressible modes 

have no growing solution, only decaying or damped oscillatory solutions. 

The initial value of il.,(k, t,.,) can be obtained from eq. (6) by taking the curl, 

vx+(x t , ret ) = V x KV x Bo) x Bol 
477POEc 

(49) 

Again, as in the compressible case (il(k, t,,,)) = 0. 

If we assume a power law Ansatz for the magnetic field spectrum, as in eq. (40), ne 

find for the imcompressible velocity field spectrum: 

(50) 
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Comparing to eq. (al), we see that the incompressible mode is initially excited to almost 

the same extent as the compressible mode. .Uthough the two modes have comparable 

“initial” amplitude and spectnun, they have quite different time evolution, and do not 

mix with each other as time evolves. 

5. Conclusions 

We have studied the effects of magnetic fields present at recombination on the origin 

and evolution of density perturbations and the peculiar velocity field. We find there are 

generic features of the generated density perturbations which are largely independent of 

the assumed spectrum of the primordial magnetic field. The first conclusion we can draw 

is that magnetic fields cannot explain the observed galaxy power spectrum on large scales, 

since the generated spectrum P(k) 0: k’ for small k. 

-4nother generic feature is the cutoff introduced by the magnetic Jeans length. This 

cutoff limits the amplitude of the power spectrum for any choice of magnetic field strength. 

As the magnetic field strength increases, the amplitude for a given density perturbation 

mode rises, but, simultaneously, the magnetic Jeans cutoff moves to smaller k. The net 

effect, in the case of power law magnetic field spectra, is that the peak amplitude for the 

density power spectrum is independent of (B,$. 

Since the generated spectrum falls sharply at small k and is cut off at large k, magnetic 

fields generally produce a peak in the density spectrum over a narrow range of wavenum- 

bers. For~this peak to be of relevance to the formation of structure, the amplitude A( k, to) 

must be 2 1 for scales k-’ 5 8 Mpc. The peak amplitude is sensitive to the assumed 

spectrum for the primordial magnetic field; the smaller k,,,, the stronger the variance 

in the density perturbations. In particular, if kmax 2 kB, density variances well above 

unity can be obtained with relatively small magnetic fields. Depending on kg and kmaxy 

objects from galaxy scales down to a fr.rst generation of massive stars can be formed. As 

the variance reaches unity our calculations break down, and another conclusion can be 

drawn: when magnetic fields are important, their effects are mostly non-linear in nature. 

Our linear calculations can, however, be used to estimate the epoch of non-linear collapse 

of different mass scales. 

In the present work, we have focused on a purely baryonic universe. In a subsequent 

paper, we study the evolution of density perturbations when non-baryonic dark matter is 
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the dominant component of the universe. When we include non-relativistic (cold) dark 

matter, we fmd that the amplitude of the density perturbations decreases as QB decreases 

for a fixed magnetic field strength. On the other hand, the perturbations become unstable 

for all wavenumbers: since cold dark matter does not couple to the magnetic fields, no 

oscillatory modes can be sustained. In this case, the perturbation amplitude A(k) flattens 

out for large k rather than being cutoff at ICE. Baryons will still show some resistance to 

clumping on small scales due to the magnetic field; this may segregate baryons from dark 

matter, introducing a source of bias on small scales. 

In the case of hot dark matter the growth of baryon perturbations on small scales is 

slower due to neutrino free-streaming. Therefore, the initial perturbations need to be much 

larger for the final variance to be greater than 1. Clearly, the hot dark matter scenario 

would greatly benefit from a peak in the variance at large k so that structures can form 

on scales smaller than the neutrino free-streaming length and populate the problematic 

empty voids. 

Finally, we conclude by noting that magnetic fields most likely play a dynamical role 

in the formation of galaxies and clusters of galaxies even if the original perturbations were 

caused by other sources. 
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Figure Captions 

Fig. 1: The transfer function T(k,t) plotted versus k/ks for redshifts z = 0, 1,5, 10: 100, 

and 1000. (We chose k,,, = O.Olkg.) 

Fig. 2: The variance for the delta function Ansatz Aa in units of ks/k. as a function of 

k/ks for redshifts z = O,l, 5,10,100, and 1000. (We chose k,,, = O.OlkB.) 

Fig. 3: The variance for the power law Ansatz A, in units of c,(ks/k,,,)~ as a functibn 1 

of k/k8 for redshifts z = 0, 1,5,10,100, and 1000. (We chose k,., = O.OlkB.) 
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Appendix A 

In this Appendix, we demonstrate that (L&Cll(t)) = (BrecCl(t)) = 0. We begin with 

the evolution equation for 611, obtained simply by taking the inner product of eq. (19) with 

k, so that 

k tz&+2t+; 
( > 

Cll(k,t)=P J d3kld3kzF(k,kl.kz.fUk&fi(kz),*(k-k,-kz,t)) 

(Al) 
With the use of the Green function for this equation, 

qt q = 3@(t - 0 f’ 
5kt’ [(t)-‘-(;)‘]. C-42) 

(where 6 is the step function), one can solve eq. (Al) formally. given the initial conditions 

ql(kw = 0 

and 

G,,(kt)lt=t.., = $(kt,,c). 

This Green’s function solution is given by 

Q(k, t) = 3t,.,tlbk.‘,.,I[(~)-$ _ (+)“I 

t +a J I dt’ $kld3kzG(t,t’)F(k,kl,kz.~(k~).~(kz).~(k - kl - kz,t’Ms43) 
t.., 

This equation can be solved by iteration, yielding a Born-series-like solution. for which the 

zeroth-order iterate Ci(k, t) is given by 

$(k, t) = 39w.,) [(t$ _ (tg], 
C.44) 

We first note that (C;(k,t)B,,) = 0. Thi s result is obtained simply by noting that 

hi(k, t,,,) is quadratic in B,,, (cf. eq. (20)), so that Ci(k,t)Brec is an odd product of B,,,. 

Hence, aa long as& is a random variable gotverned by Gaussian statistics, (Ci(k, t)B,,,) 

must vanish since atl odd moments of a Gaussian random variable vanish. 
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It is now straightforward to demonstrate that (i’ll( k, t)B,,,) = 0 to all orders by simply 

computing the next-order iterates: At the n rh iteration stage, t$‘( k, t) is the sum of even 

products of B,, (because F js a quadratic form in B,.,); hence, $‘(k,t)B,,, must be 

always an odd product of B,,, and therefore (Ci’(k, t)Brec) = 0, as before. Thus, under 

the assumption that the Born series expansion converges, we obtain a portion of our desired 

result, namely that 

(Cll(k, We,) = 0. 

It is now readily shown that the same result obtains for the incompressible flow, 51, 

by simply repeating the above calculation, but now projecting out the incompressible 

component. Thus, we also obtain (itL(k. t)BrK) = 0, and hence we have the ultimately 

desired result that 

(fj(k, t)&ec) = 0. 

Appendix B 

In this Appendix, we show how to obtain &,,(k, t) from i&(k) t). We start with eq. 

(20) in the main text, which reads 

(C&-T + &T - ;)Gll(k,T) = ;Gi(k : l)vi(l,T). 

Upon using T z lnt, this is equivalent to 

(t2&t + 2tf’t - ;)f$(k, t) = $(k : l)ni(l, r) 

(B1) 

The rrn.3 solution to (B2) was shown to be given by eq. (23) in the main text. which we 

rewrite aa 

$mr(k, t) = t Il,rm.(k trec)V(t) > (B3) 

where 

ii&k, t) s J< &(k,t)l* >, and m = \/25 - 12ak*. 

First, multiply both sides of eq. (B2) by Ci(k, t’), with t’ # t, and then take an average 

to get the following equation: 

29 



(t*atd +2tat - %)(fiil(k*t)d;(k,t’)) = f(Gi(k : l)vi(l,t)Ci(k,t’)) (B-l) 

Now after repeating the same ‘calculation that was used to get eq. (22) from eq. (21), it 

can be shown that 

(Gi(k : I)ai(Lt)ci(k,t’)) = -~(B~)k3(~,l(k,t)~~(k,t’)). 

Using eq. (B5), we readily obtain the solution to eq. (B4), namely 

(B5) 

(i$(k,tj~~(k,t’)) = (t,,(k,,t,,,)~li(k,t’))V(tj. (B6) 

Next, let us take complex conjugate of both sides of eq. (B2), multiply by tll(k, t,,,), and 

then take an average; that gives 

(~~(k,t)tl,(k,~rec)) = (It,l(k,t,,,)l*)V(t)’ (B7j 

From eqs. (B3) and (B7), 

(C~(k,t)tll(k,t,,,)) = dmd=l 

or 

(tj;(k.t’)~ll(k,t,,,)) = d-d-. 

C’pon using eq. (BS) in eq. (B6) 

(ijll(k,t)$(k, t’)) = d-d-v(t). 

(B8) 

(.=‘I 

Finally, with the help of eq. (B3), eq. (B9) becomes 

($k t)filj(k,O) = dm\. (BY 

On the other hand, eq. (7) in the main text gives us the following equation: 

ikW, 4 
R(t) 

= -$b(k,t) (B11) 
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By integrating eq. (Bll)! the solution for the density fluctuations is 

/ 

t 
ilk, t) = -ik dt, Wk, t’) 

t,., R(P) ’ (B12) 

By multiplying by the complex conjugate of eq. (B12), and then taking its average, we 

obtain 

(I&t)12) = kZ lc;< & ic;< j$ h,(kt,)~;(k,tz)) 
=qcggKiq~<&~~ 
= [kl,;< &dm]‘, (Bl3) 

where eq. (BlO) has been used: taking the square root of eq. (B13), we obtain 

In other words. 

&ms(k, t) = k / 
t dtl 

- &m,(k t,) 
t.., R( TV ) (BI5) 

The differential equation for &,, follows via taking the time derivative of eq. (Bl5). 

g &,,(k,t) = kErrnstk, t, . 
R(t) (B16) 

Appendix C 

In this Appendix, we show how to derive eqs. (31) and (41). We begin with eq. (29), 

V~+(x,tr,) = oV.[(V x Bs) x B,,], (Cl) 

where ce E 1/4~pse~,. By using the Fourier expressions in space for v and Bs: we obtain 
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where B E 6 throughout this Appendix. If we choose our coordinate system in such a 

way that k is along z-axis, 

jd3k, =4n/dk,kf/d/, , 

where p E COSB with 0 is the angle between the kl and r-axis. The integration range in 

eq. (C2) should be taken carefully since the integrand had 6(k - kr - ks) before integrated 

over ks with the condition of kmin 5 ki 5 k,,, for i = 1,2. In other words, there is a 

constraint on the angle to be integrated, depending on the magnitude of ICI. By taking 

into account this constraint, the integration range of eq. (C2) depends on the magnitude 

of k. and can be shown to be 

(1) For 0 5 k 5 k,in: 

(2) For k,in < k < k,,,: 

(C3) 

(C4) 

(3) For Lax I k 2 km,, + kmin: 

32 



2 

/e,d~=i,:T.im”dk./.:‘.:::..d~+~~~j”dkI~~dil. (Cj) 
. 2.11 2,. 

(4) For km, + k,in 5 k I 2k,,,: 

jdk,dii=ji~dk,~~+::-::..d~. (W 

If we take the ensemble average of both sides of eq. (C2), and use eq. (18), we obtain 

(k.f(k,t,,)) =O. 

To calculate &,,(k, t,,), we take the square of both sides of eq. (C2) and obtain 

Ik. f(k, t,,,)lZ = a2 /d3kld3kz{(-k. B’(kl))[k I . B’(k - kl)] + (k. k,)[B*(kl) B*(k -k,)]} 

x {(-k.B(kz))[kz.B(k-kz)] +(k.kz)[B(kz)‘B(k-kz)]}, (C7) 

We then take the ensemble average of both sides of eq. (Ci), and express the fourth-order 

correlation of B as a sum of a product of second order correlations by assuming a Gaussian 

distribution for B. Since each fourth-order correlation gives three products of second-order 

ones, we obtain a total of twelve terms on the right hand side of eq. (C7). Applying eq. 

(18) to these twelve terms yields terms proportional to 6(k). b(kl - kz) and &(k - kl - kz), 

respectively. Four of these terms (which contain b(k)) vanish upon integration, so that 

they will not be written here; retaining the remaining eight terms leads to the expression 

(Ik . +(k, treJ2) = CK’ / d3kld3k2{((k. B’(kl)k. B(k2))(k, . B’(k - kl)kz ’ B(k - k2)) 

+(k’k,)(k.k~)(Bf(k,)Bj(k~))(Br(k-k,)Bj(k-k~)) 

-(k’ k2)(k’BL(kl)Bi(k2))(kl ‘B*(k- kl)Bi(k- kz)) 

- (k. kl)(k . B(kz)Bf(kl))(kz B(k - kz)B:(k - kl)) 

+ ((k. B*(kl)kz . B(k - k2))(k. B(kz)k, B*(k - k,)) 

+ (k k,)(k ’ kz)(Bf(kl)Bj(k - kz))(BJ(k - kl)Bj(kz)) 

-(k. kz)(k’B*(kl)B;(k- kz))(kl ’ B’(k- kl)Bi(kt)) 

-(k . kl)(k . B(k2)Bf(k - k,))(kz . B(k - ka)B;(kl))} 

E a2J. (W 
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The integral of the these eight terms, J. is given by (using eq. (ES)), 

X {2k5k$ + k4k;(l - jp2) + zk3kfp3}, 

where the identity J(k = 0) = V/(~K)~ has been used. 

For the delta function Ansatz, Bz( k) = Ah( k - k,)/4rk2, and therefore 

J = VA2 k3 -- 
(47r)4 k: ’ 

cc91 

(ClO) 

where A = s d3k B’(k) z (Bi); eq. (31) follows from this result. 

We now evaluate J for the case of a power law spectrum for s2(k), as in eq. (41)). For 

simplicity, we assume ken = 0. The resulting integral can be solved analytically if we use 

klkmax as a small parameter. In such an expansion, the leading order term turns out to 

be (k/k,,,)3 for n = -2, and (k/k,,,)” f or 7~ = -1, 0, 1, 2. 3, 4, and 6. Finally-. we End 

the following solution for the n 2 11 case: 

J = 14;j2 -AZkZR+3k4 max 15(2?+3) [1+0(&J]. 

So the total integral of eq. (C8) is 

(Ik t(k, trec)12) = k2&,,(k, t,,,) N GAZkFa,::‘k4 
22 

15( 2n + 3) ’ (CW 

where k.+(k,t,,,) = k&(k,t,,,) was used for the compressible mode. Finally, by applying 

(Bi) = J:“‘: d3k -4k” 5 Akzii/(n + 3) to the above equation (C12), we obtain eq. (41). 
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